Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhao-Peng Deng, Shan Gao,* Li-Hua Huo and Hui Zhao

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, People's Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C-C}) = 0.002 \text{ Å}$ R factor = 0.038 wR factor = 0.111 Data-to-parameter ratio = 17.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dihydroxonium 1,5-naphthalenedisulfonate N,N-dimethylformamide disolvate

In the title salt adduct, $2H_3O^+ \cdot C_{10}H_6O_6S_2^{2-} \cdot 2C_3H_7NO$, the 1,5-naphthalenedisulfonate dianion lies on an inversion center. Intermolecular interactions link two hydroxonium cations, one 1,5-naphthalenedisulfonate dianion and two *N*,*N*-dimethylformamide molecules into a short hydrogen-bonded chain. A supramolecular hydrogen-bonding network structure is formed *via* further intermolecular hydrogen bonds.

Received 31 October 2005 Accepted 14 November 2005 Online 19 November 2005

Comment

Naphthalene-1,5-disulfonic acid, $(1,5-H_2nds)$, with its rigid structure and two functionally active SO₃ groups in two well separated positions, is known as a good candidate for the construction of supramolecular complexes (Cai, 2004), particularly as the sulfonate unit has a high propensity to form strong hydrogen bonds (Huo *et al.*, 2005). To date, a large number of metal complexes containing 1,5-H₂nds have been reported (Cai *et al.*, 2001; Gao *et al.*, 2005). However, there is no report of the structure of 1,5-H₂nds itself. Recently, we accidentally obtained the title complex by the reaction of naphthalene-1,5-disulfonyl dichloride and glycine in *N*,*N*-dimethylformamide solution; its crystal structure is reported here.

As illustrated in Fig. 1, the molecular structure of (I) consists of two hydroxonium cations, one 1,5-nds²⁻ dianion and two N,N-dimethylformamide molecules, with the 1,5-nds²⁻ dianion lying on an inversion center. One 1,5-nds²⁻ dianion and two N,N-dimethylformamide molecules are linked by two hydroxonium cations through intermolecular interactions, forming a short hydrogen-bonded chain. These short chains are further linked by intermolecular hydrogen bonds involving the hydroxonium cations and sulfonate O atoms into a supramolecular hydrogen-bonding network structure (Table 2 and Fig. 2).

Experimental

Naphthalene-1,5-disulfonyl dichloride (10 mmol) was added dropwise to an N,N-dimethylformamide solution (15 ml) containing glycine (20 mmol). The mixture was stirred for 1.5 h at room temperature, and then filtered. Colorless prismatic crystals were obtained from the solution after several days. Analysis calculated for

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

ORTEPII plot (Johnson, 1976) of the title complex, with displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are denoted by dashed lines. Unlabeled atoms are related to labeled atoms by -x, 1 - y, 1 - z.

 $C_{16}H_{26}N_2O_{10}S_2:$ C 40.85, H 5.57, N 5.95%. Found: C 40.81, H 5.54, N 5.93%.

 $D_{\rm x} = 1.424 {\rm Mg m}^{-3}$

Cell parameters from 9318

Mo $K\alpha$ radiation

reflections

 $\theta = 3.3-27.5^{\circ}$ $\mu = 0.30 \text{ mm}^{-1}$

T = 295 (2) K

 $R_{\rm int} = 0.015$

 $\theta_{\rm max} = 27.5^\circ$

 $h = -11 \rightarrow 11$

 $k = -15 \rightarrow 15$

 $l = -13 \rightarrow 13$

Prism, colorless

 $0.32 \times 0.27 \times 0.20 \text{ mm}$

2507 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0663P)^2]$

+ 0.3282P] where $P = (F_0^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm max} = 0.52 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$

2193 reflections with $I > 2\sigma(I)$

Crystal data

2H₃O⁺·C₁₀H₆O₆S₂⁻·2C₃H₇NO $M_r = 470.51$ Monoclinic, $P2_1/n$ a = 9.1614 (18) Å b = 12.101 (2) Å c = 10.053 (2) Å $\beta = 100.10$ (3)° V = 1097.2 (4) Å³ Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{min} = 0.911, T_{max} = 0.943$ 10588 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.111$ S = 1.052507 reflections 147 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

S1-O1	1.4415 (14)	C1-C5 ⁱ	1.356 (2)
S1-O2	1.4564 (13)	C1-C2	1.404 (2)
S1-O3	1.4579 (14)	C2-C3	1.368 (2)
S1-C3	1.7769 (15)	C3-C4	1.425 (2)
O4-C8	1.270 (2)	C4-C5	1.418 (2)
N1-C8	1.288 (2)	$C4-C4^{i}$	1.432 (3)
N1-C6	1.455 (3)	C5-C1 ⁱ	1.356 (2)
N1-C7	1.471 (3)		
O1-S1-C3	106.86 (8)	C3-C2-C1	120.06 (14)
O1-S1-O2	113.17 (8)	$C3-C4-C4^{i}$	118.04 (16)
O1-S1-O3	113.16 (9)	C4-C3-S1	120.94 (11)
O2-S1-C3	106.59 (7)	$C5^{i} - C1 - C2$	120.79 (15)
O2-S1-O3	111.05 (9)	C5-C4-C3	123.25 (13)
O3-S1-C3	105.39 (7)	$C5-C4-C4^{i}$	118.71 (16)
O4-C8-N1	122.66 (19)	C6-N1-C7	118.7 (2)
$C1^{i}-C5-C4$	121.19 (14)	C8-N1-C6	121.1 (2)
C2-C3-C4	121.22 (13)	C8-N1-C7	120.2 (2)
C2-C3-S1	117.84 (11)		

Symmetry code: (i) -x, -y + 1, -z + 1.

Figure 2

Packing diagram of the title complex, viewed along the *a* axis, with the \overline{O} -H···O hydrogen bonds denoted by dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Table 2

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01W-H1W1\cdots O4$ $01W-H1W2\cdots O2$ $01W-H1W3\cdots O3^{ii}$	0.87 (2) 0.87 (2) 0.87 (2)	1.60 (1) 1.82 (1) 1.79 (1)	2.435 (2) 2.652 (2) 2.653 (2)	161 (3) 161 (3) 173 (2)
- <u> </u>	1 1			

Symmetry code: (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

C-bound H atoms were placed in calculated positions [C–H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic and methine H atoms; C–H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms] and were refined in the riding-model approximation. The H atoms of hydroxonium were located in a difference map and refined with O–H restraints of 0.85 (1) Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (1054 G036) and Heilongjiang University for supporting this study.

References

Cai, J. (2004). Coord. Chem. Rev. 248, 1061-1083.

- Cai, J., Chen, C. H., Liao, C. Z., Yao, J. H., Hu, X. P. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 1137–1142.
- Gao, S., Lu, Z. Z., Huo, L. H., Zhu, Z. B. & Zhao, H. (2005). Acta Cryst. C61, m22–m24.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Huo, L. H., Gao, S., Xu, S. X. & Zhao, H. (2005). Acta Cryst. E61, m449–m450. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.